
THE PRAGMATIC INTRO
TO REACT

Clayton Anderson

thebhwgroup.com

WEB AND MOBILE APP DEVELOPMENT

AUSTIN, TX

https://thebhwgroup.com/

REACT
"A JavaScript library for building user interfaces"

But first...

HOW WE GOT HERE
OR: A BRIEF HISTORY OF WEB DEVELOPMENT

Our apps vary greatly in size and needs
Developers work on multiple projects
(Not everyone's history will be the same)

I'm going to walk through broad eras of web development history, and describe pros and cons of each

THE FIRST ERA: ALL SERVER
RENDERED

For most of the history of the web this was the norm. Web
pages were simple, JavaScript support was bad, and there

was little dynamic client behavior.

Capabilities were limited during this era, but it was much easier to understand your entire application

1. ALL SERVER RENDERED
PROS

Less required knowledge. No JS
Easy to reason about and scale
Good search engine optimization

1. ALL SERVER RENDERED
CONS

All interactions require full round trip and server render
Limited ability for highly dynamic pages

THE SECOND ERA: SERVER
RENDERED, BUT WITH

INCREMENTAL JAVASCRIPT
With the introduction of libraries like jQuery, it had become

much easier to add cool client-side features like Ajax
requests, form validation, or animations.

This is really when we started thinking about "web apps" vs "websites". Browsers were starting to get better too

2. SERVER RENDERED, BUT WITH
INCREMENTAL JAVASCRIPT

PROS

Gentle learning curve
Easy to drop in small pieces of jQuery as necessary
Good SEO
Huge plugin ecosystem

2. SERVER RENDERED, BUT WITH
INCREMENTAL JAVASCRIPT

CONS

Likely to repeat some view logic between server and client
Selector hell and entangled JS and HTML
Hard to reason about
Difficult to scale
Hard to test
Huge plugin ecosystem

As a note before continuing, jQuery is a wonderful and useful tool. These pain points aren't so much a criticism of jQuery itself
but rather with trying to build large apps with it.

THE THIRD ERA: THE MONOLITHIC
FRAMEWORK

For us, this was AngularJS. While it was far better suited to
building large apps than plain jQuery, it introduced a long

list of its own problems.

3. THE MONOLITHIC FRAMEWORK
PROS

No more element selectors!
If you were making an SPA, you had a cleaner separation
between server and client
Easier to scale

Imperative vs declarative

With jQuery, we thought "What actions do I perform to get my view to look the way I want?". But with Angular, now we ask
"What data do I change so that my view looks the way I want?"

3. THE MONOLITHIC FRAMEWORK
CONS

Poor performance
Extremely steep learning curve
Hard to debug
Contains conflicting approaches for accomplishing the
same task
Wants to own your entire app
Little to no SEO

The point isn't to dunk on Angular, but instead to show the history so we can learn from it

THE FOURTH ERA: REACT!
The goal here isn't to say that React is perfect or will be used

forever, but rather that it does a tremendous job of
addressing all the pain points of the prior eras, all while

being fun use and learn.

4. REACT
PROS

Easy to learn and reason about
Easy to test
Good SEO, from shared client / server rendering
Maintains clean separation between SPA and API server
Good performance, and clear path to tuning when it goes
awry
Straightforward integration with a larger app or other
libraries

For this presentation, we are going to focus on React being easy to learn and reason about

4. REACT
CONS

React server rendering still isn't as fast as the traditional
methods
Some people prefer a more all encompassing framework
???

We don't have the historical perspective yet

SO WHAT IS REACT?

React is a view library that abstracts away DOM manipulations. Instead of the developer having to imperatively modify or insert
into the DOM as the state of their app changes, React uses declarative components that do the messy work for them, in a
performant way. This lets the developer focus on what really matters: Given some input data, what is the rendered output of
their app?

LET'S MAKE A FRIENDS LIST WIDGET

Data structure used in next couple code samples. Don't worry about styles, just show the list of friends' names, and filter
whether they are online

Render describes how the DOM should look
Called by React whenever something changes
Render is the only requirement of a component
How do we pass data in?

Props are data passed from the parent
Props are immutable

State is mutable data managed by the component
State at one level could be a prop at another level
Meaning there is only one location where a given piece of data can be changed!

Explain data filtering

REACT IS EASY TO LEARN
Builds upon JavaScript fundamentals: We used the native
array's map and filter functions
Most components consist of nothing more complicated
than render, props, and state
Your data structures are plain objects and arrays

If you know JS, you'll be productive with React quickly. If you don't, it'll help teach you JS

HOW WOULD WE EXTEND THE FRIENDS LIST
COMPONENT?

We are hypothetically adding quite a bit to each friend, so it deserves its own component

Component composition

ANGULAR IMPLEMENTATION

ANGULAR IMPLEMENTATION

ANGULAR QUESTIONS

What is $scope?
What are these ng- attributes?
What is the syntax for filter?
And how would I extend or alter the behavior?

Many of the changes you might make here require switching between two files
There is very little plain JS. Learning Angular just teaches you Angular

STATISTICS TO CONSIDER

Metric Angular React

GitHub stars 47,454 37,347

GitHub watchers 4,196 2,741

StackOverflow questions 156,195 11,247

We can't tell exactly which is used more from these numbers, but they're in the same ballpark. But when you look at the number
of SO questions, Angular has over 10 times as many

REACT IS EASY TO REASON ABOUT
With React, render output is a pure function of props and

state. Given the same props and state, a React component
should always render the same output

This is the single most important benefit of React. This is what makes React so simple to reason about, test, and debug.
Consistency
Static analysis

REACT IS EASY TO REASON ABOUT
Colocation of concerns
Your entire view layer is a tree of components
Synchronous render
Clear control & data flow
Performance: Easy to prune branches of tree that don't
need to re-render

CONCLUSION
There has never been a better time to start using React! It

has been proven in production, and there is a great
community putting out free educational resources.

Facebook React Tutorial
Removing User Interface Complexity, or Why React is
Awesome

https://facebook.github.io/react/docs/tutorial.html
http://jlongster.com/Removing-User-Interface-Complexity,-or-Why-React-is-Awesome

THANK YOU!

QUESTIONS?

